Solução de equações bicuadradas
Equações bicuadradas são um caso especial de equações de 4º grau altamente demandadas em cálculos matemáticos, estatísticos e de engenharia, na forma
F (x) = a x 4 + a x 3 + c x2 + d x + e, onde a condição é garantida: «a» não deve ser igual a zero. Equações bicuadradas são equações da forma
ax4 + bx2 + c = 0.
Calculadora online para substituição de uma nova variável y = x 2 converte uma equação bicuadrada em uma quadrática, usando os dados iniciais na forma de coeficientes fornecidos nos campos apropriados a, b e c resolve-a. Como resultado, as raízes são encontradas y1 e y2, que são substituídas em y = x 2. E as raízes da equação bicuadrada são emitidas após sua solução.
Quão mais complicado e mais lento é resolver manualmente do que com a ajuda de uma calculadora online pode ser considerado com um exemplo. Defina os coeficientes 4, (-5) e 1 equação 4x4 - 5x2 + 1 = 0 nos campos apropriados, pressione «calcular». Em tudo sobre tudo para obter o resultado x1 = 1, x2 = - 1, x3 = 0,5, x4 = - 0.5 gasto em 15 segundos.
ax4 + bx2 + c = 0 | ||
Coeficiente a | ||
Coeficiente b | ||
Coeficiente c | ||
| ||
Resultado |