正切表,找到正切角

角的正切 – 是主要三角函数之一。它表示直角三角形腿的比。即, tg(A)=BC/AC,其中 BC – 角的对边 (A) 腿,AC – 邻边。

为什么需要知道角的正切? 这些数据具有相当实用的应用:在测地学、导航、航空中。知道三角形的一边和角度,可以使用三角恒等式轻松获得所有其他数据。所有计算都可以在我们网站上的在线计算器上轻松完成。数据在正切表中指明。

对于实际使用,不仅 Bradis 表适用。所有三角函数都可以使用计算器进行计算。为您的任务找到一个美丽的解决方案。



找到大小
A
X
初始数据
X =
A =

正切表从 0° - 360°


tg(1°)0.0175
tg(2°)0.0349
tg(3°)0.0524
tg(4°)0.0699
tg(5°)0.0875
tg(6°)0.1051
tg(7°)0.1228
tg(8°)0.1405
tg(9°)0.1584
tg(10°)0.1763
tg(11°)0.1944
tg(12°)0.2126
tg(13°)0.2309
tg(14°)0.2493
tg(15°)0.2679
tg(16°)0.2867
tg(17°)0.3057
tg(18°)0.3249
tg(19°)0.3443
tg(20°)0.364
tg(21°)0.3839
tg(22°)0.404
tg(23°)0.4245
tg(24°)0.4452
tg(25°)0.4663
tg(26°)0.4877
tg(27°)0.5095
tg(28°)0.5317
tg(29°)0.5543
tg(30°)0.5774
tg(31°)0.6009
tg(32°)0.6249
tg(33°)0.6494
tg(34°)0.6745
tg(35°)0.7002
tg(36°)0.7265
tg(37°)0.7536
tg(38°)0.7813
tg(39°)0.8098
tg(40°)0.8391
tg(41°)0.8693
tg(42°)0.9004
tg(43°)0.9325
tg(44°)0.9657
tg(45°)1
tg(46°)1.0355
tg(47°)1.0724
tg(48°)1.1106
tg(49°)1.1504
tg(50°)1.1918
tg(51°)1.2349
tg(52°)1.2799
tg(53°)1.327
tg(54°)1.3764
tg(55°)1.4281
tg(56°)1.4826
tg(57°)1.5399
tg(58°)1.6003
tg(59°)1.6643
tg(60°)1.7321
tg(61°)1.804
tg(62°)1.8807
tg(63°)1.9626
tg(64°)2.0503
tg(65°)2.1445
tg(66°)2.246
tg(67°)2.3559
tg(68°)2.4751
tg(69°)2.6051
tg(70°)2.7475
tg(71°)2.9042
tg(72°)3.0777
tg(73°)3.2709
tg(74°)3.4874
tg(75°)3.7321
tg(76°)4.0108
tg(77°)4.3315
tg(78°)4.7046
tg(79°)5.1446
tg(80°)5.6713
tg(81°)6.3138
tg(82°)7.1154
tg(83°)8.1443
tg(84°)9.5144
tg(85°)11.4301
tg(86°)14.3007
tg(87°)19.0811
tg(88°)28.6363
tg(89°)57.29
tg(90°)
tg(91°)-57.29
tg(92°)-28.6363
tg(93°)-19.0811
tg(94°)-14.3007
tg(95°)-11.4301
tg(96°)-9.5144
tg(97°)-8.1443
tg(98°)-7.1154
tg(99°)-6.3138
tg(100°)-5.6713
tg(101°)-5.1446
tg(102°)-4.7046
tg(103°)-4.3315
tg(104°)-4.0108
tg(105°)-3.7321
tg(106°)-3.4874
tg(107°)-3.2709
tg(108°)-3.0777
tg(109°)-2.9042
tg(110°)-2.7475
tg(111°)-2.6051
tg(112°)-2.4751
tg(113°)-2.3559
tg(114°)-2.246
tg(115°)-2.1445
tg(116°)-2.0503
tg(117°)-1.9626
tg(118°)-1.8807
tg(119°)-1.804
tg(120°)-1.7321
tg(121°)-1.6643
tg(122°)-1.6003
tg(123°)-1.5399
tg(124°)-1.4826
tg(125°)-1.4281
tg(126°)-1.3764
tg(127°)-1.327
tg(128°)-1.2799
tg(129°)-1.2349
tg(130°)-1.1918
tg(131°)-1.1504
tg(132°)-1.1106
tg(133°)-1.0724
tg(134°)-1.0355
tg(135°)-1
tg(136°)-0.9657
tg(137°)-0.9325
tg(138°)-0.9004
tg(139°)-0.8693
tg(140°)-0.8391
tg(141°)-0.8098
tg(142°)-0.7813
tg(143°)-0.7536
tg(144°)-0.7265
tg(145°)-0.7002
tg(146°)-0.6745
tg(147°)-0.6494
tg(148°)-0.6249
tg(149°)-0.6009
tg(150°)-0.5774
tg(151°)-0.5543
tg(152°)-0.5317
tg(153°)-0.5095
tg(154°)-0.4877
tg(155°)-0.4663
tg(156°)-0.4452
tg(157°)-0.4245
tg(158°)-0.404
tg(159°)-0.3839
tg(160°)-0.364
tg(161°)-0.3443
tg(162°)-0.3249
tg(163°)-0.3057
tg(164°)-0.2867
tg(165°)-0.2679
tg(166°)-0.2493
tg(167°)-0.2309
tg(168°)-0.2126
tg(169°)-0.1944
tg(170°)-0.1763
tg(171°)-0.1584
tg(172°)-0.1405
tg(173°)-0.1228
tg(174°)-0.1051
tg(175°)-0.0875
tg(176°)-0.0699
tg(177°)-0.0524
tg(178°)-0.0349
tg(179°)-0.0175
tg(180°)-0

tg(181°)0.0175
tg(182°)0.0349
tg(183°)0.0524
tg(184°)0.0699
tg(185°)0.0875
tg(186°)0.1051
tg(187°)0.1228
tg(188°)0.1405
tg(189°)0.1584
tg(190°)0.1763
tg(191°)0.1944
tg(192°)0.2126
tg(193°)0.2309
tg(194°)0.2493
tg(195°)0.2679
tg(196°)0.2867
tg(197°)0.3057
tg(198°)0.3249
tg(199°)0.3443
tg(200°)0.364
tg(201°)0.3839
tg(202°)0.404
tg(203°)0.4245
tg(204°)0.4452
tg(205°)0.4663
tg(206°)0.4877
tg(207°)0.5095
tg(208°)0.5317
tg(209°)0.5543
tg(210°)0.5774
tg(211°)0.6009
tg(212°)0.6249
tg(213°)0.6494
tg(214°)0.6745
tg(215°)0.7002
tg(216°)0.7265
tg(217°)0.7536
tg(218°)0.7813
tg(219°)0.8098
tg(220°)0.8391
tg(221°)0.8693
tg(222°)0.9004
tg(223°)0.9325
tg(224°)0.9657
tg(225°)1
tg(226°)1.0355
tg(227°)1.0724
tg(228°)1.1106
tg(229°)1.1504
tg(230°)1.1918
tg(231°)1.2349
tg(232°)1.2799
tg(233°)1.327
tg(234°)1.3764
tg(235°)1.4281
tg(236°)1.4826
tg(237°)1.5399
tg(238°)1.6003
tg(239°)1.6643
tg(240°)1.7321
tg(241°)1.804
tg(242°)1.8807
tg(243°)1.9626
tg(244°)2.0503
tg(245°)2.1445
tg(246°)2.246
tg(247°)2.3559
tg(248°)2.4751
tg(249°)2.6051
tg(250°)2.7475
tg(251°)2.9042
tg(252°)3.0777
tg(253°)3.2709
tg(254°)3.4874
tg(255°)3.7321
tg(256°)4.0108
tg(257°)4.3315
tg(258°)4.7046
tg(259°)5.1446
tg(260°)5.6713
tg(261°)6.3138
tg(262°)7.1154
tg(263°)8.1443
tg(264°)9.5144
tg(265°)11.4301
tg(266°)14.3007
tg(267°)19.0811
tg(268°)28.6363
tg(269°)57.29
tg(270°)- ∞
tg(271°)-57.29
tg(272°)-28.6363
tg(273°)-19.0811
tg(274°)-14.3007
tg(275°)-11.4301
tg(276°)-9.5144
tg(277°)-8.1443
tg(278°)-7.1154
tg(279°)-6.3138
tg(280°)-5.6713
tg(281°)-5.1446
tg(282°)-4.7046
tg(283°)-4.3315
tg(284°)-4.0108
tg(285°)-3.7321
tg(286°)-3.4874
tg(287°)-3.2709
tg(288°)-3.0777
tg(289°)-2.9042
tg(290°)-2.7475
tg(291°)-2.6051
tg(292°)-2.4751
tg(293°)-2.3559
tg(294°)-2.246
tg(295°)-2.1445
tg(296°)-2.0503
tg(297°)-1.9626
tg(298°)-1.8807
tg(299°)-1.804
tg(300°)-1.7321
tg(301°)-1.6643
tg(302°)-1.6003
tg(303°)-1.5399
tg(304°)-1.4826
tg(305°)-1.4281
tg(306°)-1.3764
tg(307°)-1.327
tg(308°)-1.2799
tg(309°)-1.2349
tg(310°)-1.1918
tg(311°)-1.1504
tg(312°)-1.1106
tg(313°)-1.0724
tg(314°)-1.0355
tg(315°)-1
tg(316°)-0.9657
tg(317°)-0.9325
tg(318°)-0.9004
tg(319°)-0.8693
tg(320°)-0.8391
tg(321°)-0.8098
tg(322°)-0.7813
tg(323°)-0.7536
tg(324°)-0.7265
tg(325°)-0.7002
tg(326°)-0.6745
tg(327°)-0.6494
tg(328°)-0.6249
tg(329°)-0.6009
tg(330°)-0.5774
tg(331°)-0.5543
tg(332°)-0.5317
tg(333°)-0.5095
tg(334°)-0.4877
tg(335°)-0.4663
tg(336°)-0.4452
tg(337°)-0.4245
tg(338°)-0.404
tg(339°)-0.3839
tg(340°)-0.364
tg(341°)-0.3443
tg(342°)-0.3249
tg(343°)-0.3057
tg(344°)-0.2867
tg(345°)-0.2679
tg(346°)-0.2493
tg(347°)-0.2309
tg(348°)-0.2126
tg(349°)-0.1944
tg(350°)-0.1763
tg(351°)-0.1584
tg(352°)-0.1405
tg(353°)-0.1228
tg(354°)-0.1051
tg(355°)-0.0875
tg(356°)-0.0699
tg(357°)-0.0524
tg(358°)-0.0349
tg(359°)-0.0175
tg(360°)-0