三角函数 – 这是直角三角形中角的腿和斜边的比。这非常重要。边的长度可能会改变,但比值将保持不变。基于此,Bradis 表被创建,指明角的正弦、余弦、正切和余切。
余切 – 是直角三角形中角的腿的比。其书写如下: ctg (A) = AC/BC,其中 AC – 角的邻边,BC – 角的对边。
所有数据都在角的余切表中。知道角度和一条边,可以获得其余数据。可以在网站上使用在线计算器进行计算。声明:我知道角度 – 我知道其三角函数,永远正确。
余切表从 0° - 360°
ctg(1°) | 57.29 | ctg(2°) | 28.6363 | ctg(3°) | 19.0811 | ctg(4°) | 14.3007 | ctg(5°) | 11.4301 | ctg(6°) | 9.5144 | ctg(7°) | 8.1443 | ctg(8°) | 7.1154 | ctg(9°) | 6.3138 | ctg(10°) | 5.6713 | ctg(11°) | 5.1446 | ctg(12°) | 4.7046 | ctg(13°) | 4.3315 | ctg(14°) | 4.0108 | ctg(15°) | 3.7321 | ctg(16°) | 3.4874 | ctg(17°) | 3.2709 | ctg(18°) | 3.0777 | ctg(19°) | 2.9042 | ctg(20°) | 2.7475 | ctg(21°) | 2.6051 | ctg(22°) | 2.4751 | ctg(23°) | 2.3559 | ctg(24°) | 2.246 | ctg(25°) | 2.1445 | ctg(26°) | 2.0503 | ctg(27°) | 1.9626 | ctg(28°) | 1.8807 | ctg(29°) | 1.804 | ctg(30°) | 1.7321 | ctg(31°) | 1.6643 | ctg(32°) | 1.6003 | ctg(33°) | 1.5399 | ctg(34°) | 1.4826 | ctg(35°) | 1.4281 | ctg(36°) | 1.3764 |
|
ctg(37°) | 1.327 | ctg(38°) | 1.2799 | ctg(39°) | 1.2349 | ctg(40°) | 1.1918 | ctg(41°) | 1.1504 | ctg(42°) | 1.1106 | ctg(43°) | 1.0724 | ctg(44°) | 1.0355 | ctg(45°) | 1 | ctg(46°) | 0.9657 | ctg(47°) | 0.9325 | ctg(48°) | 0.9004 | ctg(49°) | 0.8693 | ctg(50°) | 0.8391 | ctg(51°) | 0.8098 | ctg(52°) | 0.7813 | ctg(53°) | 0.7536 | ctg(54°) | 0.7265 | ctg(55°) | 0.7002 | ctg(56°) | 0.6745 | ctg(57°) | 0.6494 | ctg(58°) | 0.6249 | ctg(59°) | 0.6009 | ctg(60°) | 0.5774 | ctg(61°) | 0.5543 | ctg(62°) | 0.5317 | ctg(63°) | 0.5095 | ctg(64°) | 0.4877 | ctg(65°) | 0.4663 | ctg(66°) | 0.4452 | ctg(67°) | 0.4245 | ctg(68°) | 0.404 | ctg(69°) | 0.3839 | ctg(70°) | 0.364 | ctg(71°) | 0.3443 | ctg(72°) | 0.3249 |
|
ctg(73°) | 0.3057 | ctg(74°) | 0.2867 | ctg(75°) | 0.2679 | ctg(76°) | 0.2493 | ctg(77°) | 0.2309 | ctg(78°) | 0.2126 | ctg(79°) | 0.1944 | ctg(80°) | 0.1763 | ctg(81°) | 0.1584 | ctg(82°) | 0.1405 | ctg(83°) | 0.1228 | ctg(84°) | 0.1051 | ctg(85°) | 0.0875 | ctg(86°) | 0.0699 | ctg(87°) | 0.0524 | ctg(88°) | 0.0349 | ctg(89°) | 0.0175 | ctg(90°) | 0 | ctg(91°) | -0.0175 | ctg(92°) | -0.0349 | ctg(93°) | -0.0524 | ctg(94°) | -0.0699 | ctg(95°) | -0.0875 | ctg(96°) | -0.1051 | ctg(97°) | -0.1228 | ctg(98°) | -0.1405 | ctg(99°) | -0.1584 | ctg(100°) | -0.1763 | ctg(101°) | -0.1944 | ctg(102°) | -0.2126 | ctg(103°) | -0.2309 | ctg(104°) | -0.2493 | ctg(105°) | -0.2679 | ctg(106°) | -0.2867 | ctg(107°) | -0.3057 | ctg(108°) | -0.3249 |
|
ctg(109°) | -0.3443 | ctg(110°) | -0.364 | ctg(111°) | -0.3839 | ctg(112°) | -0.404 | ctg(113°) | -0.4245 | ctg(114°) | -0.4452 | ctg(115°) | -0.4663 | ctg(116°) | -0.4877 | ctg(117°) | -0.5095 | ctg(118°) | -0.5317 | ctg(119°) | -0.5543 | ctg(120°) | -0.5774 | ctg(121°) | -0.6009 | ctg(122°) | -0.6249 | ctg(123°) | -0.6494 | ctg(124°) | -0.6745 | ctg(125°) | -0.7002 | ctg(126°) | -0.7265 | ctg(127°) | -0.7536 | ctg(128°) | -0.7813 | ctg(129°) | -0.8098 | ctg(130°) | -0.8391 | ctg(131°) | -0.8693 | ctg(132°) | -0.9004 | ctg(133°) | -0.9325 | ctg(134°) | -0.9657 | ctg(135°) | -1 | ctg(136°) | -1.0355 | ctg(137°) | -1.0724 | ctg(138°) | -1.1106 | ctg(139°) | -1.1504 | ctg(140°) | -1.1918 | ctg(141°) | -1.2349 | ctg(142°) | -1.2799 | ctg(143°) | -1.327 | ctg(144°) | -1.3764 |
|
ctg(145°) | -1.4281 | ctg(146°) | -1.4826 | ctg(147°) | -1.5399 | ctg(148°) | -1.6003 | ctg(149°) | -1.6643 | ctg(150°) | -1.7321 | ctg(151°) | -1.804 | ctg(152°) | -1.8807 | ctg(153°) | -1.9626 | ctg(154°) | -2.0503 | ctg(155°) | -2.1445 | ctg(156°) | -2.246 | ctg(157°) | -2.3559 | ctg(158°) | -2.4751 | ctg(159°) | -2.6051 | ctg(160°) | -2.7475 | ctg(161°) | -2.9042 | ctg(162°) | -3.0777 | ctg(163°) | -3.2709 | ctg(164°) | -3.4874 | ctg(165°) | -3.7321 | ctg(166°) | -4.0108 | ctg(167°) | -4.3315 | ctg(168°) | -4.7046 | ctg(169°) | -5.1446 | ctg(170°) | -5.6713 | ctg(171°) | -6.3138 | ctg(172°) | -7.1154 | ctg(173°) | -8.1443 | ctg(174°) | -9.5144 | ctg(175°) | -11.4301 | ctg(176°) | -14.3007 | ctg(177°) | -19.0811 | ctg(178°) | -28.6363 | ctg(179°) | -57.29 | ctg(180°) | - ∞ |
|
ctg(181°) | 57.29 | ctg(182°) | 28.6363 | ctg(183°) | 19.0811 | ctg(184°) | 14.3007 | ctg(185°) | 11.4301 | ctg(186°) | 9.5144 | ctg(187°) | 8.1443 | ctg(188°) | 7.1154 | ctg(189°) | 6.3138 | ctg(190°) | 5.6713 | ctg(191°) | 5.1446 | ctg(192°) | 4.7046 | ctg(193°) | 4.3315 | ctg(194°) | 4.0108 | ctg(195°) | 3.7321 | ctg(196°) | 3.4874 | ctg(197°) | 3.2709 | ctg(198°) | 3.0777 | ctg(199°) | 2.9042 | ctg(200°) | 2.7475 | ctg(201°) | 2.6051 | ctg(202°) | 2.4751 | ctg(203°) | 2.3559 | ctg(204°) | 2.246 | ctg(205°) | 2.1445 | ctg(206°) | 2.0503 | ctg(207°) | 1.9626 | ctg(208°) | 1.8807 | ctg(209°) | 1.804 | ctg(210°) | 1.7321 | ctg(211°) | 1.6643 | ctg(212°) | 1.6003 | ctg(213°) | 1.5399 | ctg(214°) | 1.4826 | ctg(215°) | 1.4281 | ctg(216°) | 1.3764 |
|
ctg(217°) | 1.327 | ctg(218°) | 1.2799 | ctg(219°) | 1.2349 | ctg(220°) | 1.1918 | ctg(221°) | 1.1504 | ctg(222°) | 1.1106 | ctg(223°) | 1.0724 | ctg(224°) | 1.0355 | ctg(225°) | 1 | ctg(226°) | 0.9657 | ctg(227°) | 0.9325 | ctg(228°) | 0.9004 | ctg(229°) | 0.8693 | ctg(230°) | 0.8391 | ctg(231°) | 0.8098 | ctg(232°) | 0.7813 | ctg(233°) | 0.7536 | ctg(234°) | 0.7265 | ctg(235°) | 0.7002 | ctg(236°) | 0.6745 | ctg(237°) | 0.6494 | ctg(238°) | 0.6249 | ctg(239°) | 0.6009 | ctg(240°) | 0.5774 | ctg(241°) | 0.5543 | ctg(242°) | 0.5317 | ctg(243°) | 0.5095 | ctg(244°) | 0.4877 | ctg(245°) | 0.4663 | ctg(246°) | 0.4452 | ctg(247°) | 0.4245 | ctg(248°) | 0.404 | ctg(249°) | 0.3839 | ctg(250°) | 0.364 | ctg(251°) | 0.3443 | ctg(252°) | 0.3249 |
|
ctg(253°) | 0.3057 | ctg(254°) | 0.2867 | ctg(255°) | 0.2679 | ctg(256°) | 0.2493 | ctg(257°) | 0.2309 | ctg(258°) | 0.2126 | ctg(259°) | 0.1944 | ctg(260°) | 0.1763 | ctg(261°) | 0.1584 | ctg(262°) | 0.1405 | ctg(263°) | 0.1228 | ctg(264°) | 0.1051 | ctg(265°) | 0.0875 | ctg(266°) | 0.0699 | ctg(267°) | 0.0524 | ctg(268°) | 0.0349 | ctg(269°) | 0.0175 | ctg(270°) | 0 | ctg(271°) | -0.0175 | ctg(272°) | -0.0349 | ctg(273°) | -0.0524 | ctg(274°) | -0.0699 | ctg(275°) | -0.0875 | ctg(276°) | -0.1051 | ctg(277°) | -0.1228 | ctg(278°) | -0.1405 | ctg(279°) | -0.1584 | ctg(280°) | -0.1763 | ctg(281°) | -0.1944 | ctg(282°) | -0.2126 | ctg(283°) | -0.2309 | ctg(284°) | -0.2493 | ctg(285°) | -0.2679 | ctg(286°) | -0.2867 | ctg(287°) | -0.3057 | ctg(288°) | -0.3249 |
|
ctg(289°) | -0.3443 | ctg(290°) | -0.364 | ctg(291°) | -0.3839 | ctg(292°) | -0.404 | ctg(293°) | -0.4245 | ctg(294°) | -0.4452 | ctg(295°) | -0.4663 | ctg(296°) | -0.4877 | ctg(297°) | -0.5095 | ctg(298°) | -0.5317 | ctg(299°) | -0.5543 | ctg(300°) | -0.5774 | ctg(301°) | -0.6009 | ctg(302°) | -0.6249 | ctg(303°) | -0.6494 | ctg(304°) | -0.6745 | ctg(305°) | -0.7002 | ctg(306°) | -0.7265 | ctg(307°) | -0.7536 | ctg(308°) | -0.7813 | ctg(309°) | -0.8098 | ctg(310°) | -0.8391 | ctg(311°) | -0.8693 | ctg(312°) | -0.9004 | ctg(313°) | -0.9325 | ctg(314°) | -0.9657 | ctg(315°) | -1 | ctg(316°) | -1.0355 | ctg(317°) | -1.0724 | ctg(318°) | -1.1106 | ctg(319°) | -1.1504 | ctg(320°) | -1.1918 | ctg(321°) | -1.2349 | ctg(322°) | -1.2799 | ctg(323°) | -1.327 | ctg(324°) | -1.3764 |
|
ctg(325°) | -1.4281 | ctg(326°) | -1.4826 | ctg(327°) | -1.5399 | ctg(328°) | -1.6003 | ctg(329°) | -1.6643 | ctg(330°) | -1.7321 | ctg(331°) | -1.804 | ctg(332°) | -1.8807 | ctg(333°) | -1.9626 | ctg(334°) | -2.0503 | ctg(335°) | -2.1445 | ctg(336°) | -2.246 | ctg(337°) | -2.3559 | ctg(338°) | -2.4751 | ctg(339°) | -2.6051 | ctg(340°) | -2.7475 | ctg(341°) | -2.9042 | ctg(342°) | -3.0777 | ctg(343°) | -3.2709 | ctg(344°) | -3.4874 | ctg(345°) | -3.7321 | ctg(346°) | -4.0108 | ctg(347°) | -4.3315 | ctg(348°) | -4.7046 | ctg(349°) | -5.1446 | ctg(350°) | -5.6713 | ctg(351°) | -6.3138 | ctg(352°) | -7.1154 | ctg(353°) | -8.1443 | ctg(354°) | -9.5144 | ctg(355°) | -11.4301 | ctg(356°) | -14.3007 | ctg(357°) | -19.0811 | ctg(358°) | -28.6363 | ctg(359°) | -57.29 | ctg(360°) | ∞ |
|