Cosinustabell, hitta cosinusvärden för vinkeln

Cosinus för vinkeln är en av de trigonometriska funktionerna. Det är förhållandet mellan den intilliggande kateten av den rätvinkliga triangeln och hypotenusan. Det skrivs som följer: cos (A) = AC/AB, där AC – intilliggande katet till vinkeln (A), AB – hypotenusa.

Varför är det nödvändigt att utföra sådana komplexa beräkningar vid första anblicken? Sedan antiken är axiomet känt: Jag känner till vinkeln – Jag känner till dess trigonometriska funktion. Följaktligen, om cos vinkeln är känd, kan denna vinkel hittas i Bradis tabellerna. Omvänt, – genom att känna till vinkeln, är det lätt att beräkna cosinus. Från detta kan man hitta följande data: längden på kateterna och hypotenusan.

Dessa data används inte bara i rena matematiska beräkningar. Det är omöjligt att ens dra en elementär plan över ett område utan att känna till trigonometriska funktioner. Genom att använda en online kalkylator kan uppgiften förenklas, och de nödvändiga uppgifterna kan erhållas på bråkdelar av en sekund.



Hitta storleken
A
X
Initialdata
X =
A =

Cosinustabell från 0° - 360°


Cos(1°)0.9998
Cos(2°)0.9994
Cos(3°)0.9986
Cos(4°)0.9976
Cos(5°)0.9962
Cos(6°)0.9945
Cos(7°)0.9925
Cos(8°)0.9903
Cos(9°)0.9877
Cos(10°)0.9848
Cos(11°)0.9816
Cos(12°)0.9781
Cos(13°)0.9744
Cos(14°)0.9703
Cos(15°)0.9659
Cos(16°)0.9613
Cos(17°)0.9563
Cos(18°)0.9511
Cos(19°)0.9455
Cos(20°)0.9397
Cos(21°)0.9336
Cos(22°)0.9272
Cos(23°)0.9205
Cos(24°)0.9135
Cos(25°)0.9063
Cos(26°)0.8988
Cos(27°)0.891
Cos(28°)0.8829
Cos(29°)0.8746
Cos(30°)0.866
Cos(31°)0.8572
Cos(32°)0.848
Cos(33°)0.8387
Cos(34°)0.829
Cos(35°)0.8192
Cos(36°)0.809
Cos(37°)0.7986
Cos(38°)0.788
Cos(39°)0.7771
Cos(40°)0.766
Cos(41°)0.7547
Cos(42°)0.7431
Cos(43°)0.7314
Cos(44°)0.7193
Cos(45°)0.7071
Cos(46°)0.6947
Cos(47°)0.682
Cos(48°)0.6691
Cos(49°)0.6561
Cos(50°)0.6428
Cos(51°)0.6293
Cos(52°)0.6157
Cos(53°)0.6018
Cos(54°)0.5878
Cos(55°)0.5736
Cos(56°)0.5592
Cos(57°)0.5446
Cos(58°)0.5299
Cos(59°)0.515
Cos(60°)0.5
Cos(61°)0.4848
Cos(62°)0.4695
Cos(63°)0.454
Cos(64°)0.4384
Cos(65°)0.4226
Cos(66°)0.4067
Cos(67°)0.3907
Cos(68°)0.3746
Cos(69°)0.3584
Cos(70°)0.342
Cos(71°)0.3256
Cos(72°)0.309
Cos(73°)0.2924
Cos(74°)0.2756
Cos(75°)0.2588
Cos(76°)0.2419
Cos(77°)0.225
Cos(78°)0.2079
Cos(79°)0.1908
Cos(80°)0.1736
Cos(81°)0.1564
Cos(82°)0.1392
Cos(83°)0.1219
Cos(84°)0.1045
Cos(85°)0.0872
Cos(86°)0.0698
Cos(87°)0.0523
Cos(88°)0.0349
Cos(89°)0.0175
Cos(90°)0
Cos(91°)-0.0175
Cos(92°)-0.0349
Cos(93°)-0.0523
Cos(94°)-0.0698
Cos(95°)-0.0872
Cos(96°)-0.1045
Cos(97°)-0.1219
Cos(98°)-0.1392
Cos(99°)-0.1564
Cos(100°)-0.1736
Cos(101°)-0.1908
Cos(102°)-0.2079
Cos(103°)-0.225
Cos(104°)-0.2419
Cos(105°)-0.2588
Cos(106°)-0.2756
Cos(107°)-0.2924
Cos(108°)-0.309
Cos(109°)-0.3256
Cos(110°)-0.342
Cos(111°)-0.3584
Cos(112°)-0.3746
Cos(113°)-0.3907
Cos(114°)-0.4067
Cos(115°)-0.4226
Cos(116°)-0.4384
Cos(117°)-0.454
Cos(118°)-0.4695
Cos(119°)-0.4848
Cos(120°)-0.5
Cos(121°)-0.515
Cos(122°)-0.5299
Cos(123°)-0.5446
Cos(124°)-0.5592
Cos(125°)-0.5736
Cos(126°)-0.5878
Cos(127°)-0.6018
Cos(128°)-0.6157
Cos(129°)-0.6293
Cos(130°)-0.6428
Cos(131°)-0.6561
Cos(132°)-0.6691
Cos(133°)-0.682
Cos(134°)-0.6947
Cos(135°)-0.7071
Cos(136°)-0.7193
Cos(137°)-0.7314
Cos(138°)-0.7431
Cos(139°)-0.7547
Cos(140°)-0.766
Cos(141°)-0.7771
Cos(142°)-0.788
Cos(143°)-0.7986
Cos(144°)-0.809
Cos(145°)-0.8192
Cos(146°)-0.829
Cos(147°)-0.8387
Cos(148°)-0.848
Cos(149°)-0.8572
Cos(150°)-0.866
Cos(151°)-0.8746
Cos(152°)-0.8829
Cos(153°)-0.891
Cos(154°)-0.8988
Cos(155°)-0.9063
Cos(156°)-0.9135
Cos(157°)-0.9205
Cos(158°)-0.9272
Cos(159°)-0.9336
Cos(160°)-0.9397
Cos(161°)-0.9455
Cos(162°)-0.9511
Cos(163°)-0.9563
Cos(164°)-0.9613
Cos(165°)-0.9659
Cos(166°)-0.9703
Cos(167°)-0.9744
Cos(168°)-0.9781
Cos(169°)-0.9816
Cos(170°)-0.9848
Cos(171°)-0.9877
Cos(172°)-0.9903
Cos(173°)-0.9925
Cos(174°)-0.9945
Cos(175°)-0.9962
Cos(176°)-0.9976
Cos(177°)-0.9986
Cos(178°)-0.9994
Cos(179°)-0.9998
Cos(180°)-1


Cos(181°)-0.9998
Cos(182°)-0.9994
Cos(183°)-0.9986
Cos(184°)-0.9976
Cos(185°)-0.9962
Cos(186°)-0.9945
Cos(187°)-0.9925
Cos(188°)-0.9903
Cos(189°)-0.9877
Cos(190°)-0.9848
Cos(191°)-0.9816
Cos(192°)-0.9781
Cos(193°)-0.9744
Cos(194°)-0.9703
Cos(195°)-0.9659
Cos(196°)-0.9613
Cos(197°)-0.9563
Cos(198°)-0.9511
Cos(199°)-0.9455
Cos(200°)-0.9397
Cos(201°)-0.9336
Cos(202°)-0.9272
Cos(203°)-0.9205
Cos(204°)-0.9135
Cos(205°)-0.9063
Cos(206°)-0.8988
Cos(207°)-0.891
Cos(208°)-0.8829
Cos(209°)-0.8746
Cos(210°)-0.866
Cos(211°)-0.8572
Cos(212°)-0.848
Cos(213°)-0.8387
Cos(214°)-0.829
Cos(215°)-0.8192
Cos(216°)-0.809
Cos(217°)-0.7986
Cos(218°)-0.788
Cos(219°)-0.7771
Cos(220°)-0.766
Cos(221°)-0.7547
Cos(222°)-0.7431
Cos(223°)-0.7314
Cos(224°)-0.7193
Cos(225°)-0.7071
Cos(226°)-0.6947
Cos(227°)-0.682
Cos(228°)-0.6691
Cos(229°)-0.6561
Cos(230°)-0.6428
Cos(231°)-0.6293
Cos(232°)-0.6157
Cos(233°)-0.6018
Cos(234°)-0.5878
Cos(235°)-0.5736
Cos(236°)-0.5592
Cos(237°)-0.5446
Cos(238°)-0.5299
Cos(239°)-0.515
Cos(240°)-0.5
Cos(241°)-0.4848
Cos(242°)-0.4695
Cos(243°)-0.454
Cos(244°)-0.4384
Cos(245°)-0.4226
Cos(246°)-0.4067
Cos(247°)-0.3907
Cos(248°)-0.3746
Cos(249°)-0.3584
Cos(250°)-0.342
Cos(251°)-0.3256
Cos(252°)-0.309
Cos(253°)-0.2924
Cos(254°)-0.2756
Cos(255°)-0.2588
Cos(256°)-0.2419
Cos(257°)-0.225
Cos(258°)-0.2079
Cos(259°)-0.1908
Cos(260°)-0.1736
Cos(261°)-0.1564
Cos(262°)-0.1392
Cos(263°)-0.1219
Cos(264°)-0.1045
Cos(265°)-0.0872
Cos(266°)-0.0698
Cos(267°)-0.0523
Cos(268°)-0.0349
Cos(269°)-0.0175
Cos(270°)-0
Cos(271°)0.0175
Cos(272°)0.0349
Cos(273°)0.0523
Cos(274°)0.0698
Cos(275°)0.0872
Cos(276°)0.1045
Cos(277°)0.1219
Cos(278°)0.1392
Cos(279°)0.1564
Cos(280°)0.1736
Cos(281°)0.1908
Cos(282°)0.2079
Cos(283°)0.225
Cos(284°)0.2419
Cos(285°)0.2588
Cos(286°)0.2756
Cos(287°)0.2924
Cos(288°)0.309
Cos(289°)0.3256
Cos(290°)0.342
Cos(291°)0.3584
Cos(292°)0.3746
Cos(293°)0.3907
Cos(294°)0.4067
Cos(295°)0.4226
Cos(296°)0.4384
Cos(297°)0.454
Cos(298°)0.4695
Cos(299°)0.4848
Cos(300°)0.5
Cos(301°)0.515
Cos(302°)0.5299
Cos(303°)0.5446
Cos(304°)0.5592
Cos(305°)0.5736
Cos(306°)0.5878
Cos(307°)0.6018
Cos(308°)0.6157
Cos(309°)0.6293
Cos(310°)0.6428
Cos(311°)0.6561
Cos(312°)0.6691
Cos(313°)0.682
Cos(314°)0.6947
Cos(315°)0.7071
Cos(316°)0.7193
Cos(317°)0.7314
Cos(318°)0.7431
Cos(319°)0.7547
Cos(320°)0.766
Cos(321°)0.7771
Cos(322°)0.788
Cos(323°)0.7986
Cos(324°)0.809
Cos(325°)0.8192
Cos(326°)0.829
Cos(327°)0.8387
Cos(328°)0.848
Cos(329°)0.8572
Cos(330°)0.866
Cos(331°)0.8746
Cos(332°)0.8829
Cos(333°)0.891
Cos(334°)0.8988
Cos(335°)0.9063
Cos(336°)0.9135
Cos(337°)0.9205
Cos(338°)0.9272
Cos(339°)0.9336
Cos(340°)0.9397
Cos(341°)0.9455
Cos(342°)0.9511
Cos(343°)0.9563
Cos(344°)0.9613
Cos(345°)0.9659
Cos(346°)0.9703
Cos(347°)0.9744
Cos(348°)0.9781
Cos(349°)0.9816
Cos(350°)0.9848
Cos(351°)0.9877
Cos(352°)0.9903
Cos(353°)0.9925
Cos(354°)0.9945
Cos(355°)0.9962
Cos(356°)0.9976
Cos(357°)0.9986
Cos(358°)0.9994
Cos(359°)0.9998
Cos(360°)1